Dependency-based Semantic Analysis of Natural-language Text

نویسنده

  • Richard Johansson
چکیده

Semantic roles, logical relations such as AGENT or INSTRUMENT that hold between events and their participants and circumstances, need to be determined automatically by several types of applications in natural language processing. This process is referred to as semantic role labeling. This dissertation describes how to construct statistical models for semantic role labeling of English text, and how role semantics is related to surface syntax. It is generally agreed that the problem of semantic role labeling is closely tied to syntactic analysis. Most previous implementations of semantic role labelers have used constituents as the syntactic input, while dependency representations, in which the syntactic structure is viewed as a graph of labeled word-to-word relations, has received very little attention in comparison. Contrary to previous claims, this work demonstrates empirically that dependency representations can serve as the input for semantic role labelers and achieve similar results. This is important theoretically since it makes the syntactic–semantic interface conceptually simpler and more intuitive, but also has practical significance since there are languages for which constituent annotation is infeasible. The dissertation devotes considerable effort to investigating the relation between syntactic representation and semantic role labeling performance. Apart from the main result that dependency-based semantic role labeling rivals its constituent-based counterpart, the empirical experiments support two findings: First, that the dependencysyntactic representation has to be well-designed in order to achieve a good performance in semantic role labeling. Secondly, that the choice of syntactic representation affects the substages of the semantic role labeling task differently; above all, the role classification task, which relies strongly on lexical features, is shown to benefit from dependency representations. The systems presented in this work have been evaluated in two international open evaluations, in both of which they achieved the top result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Feature Engineering in Persian Dependency Parser

Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...

متن کامل

A Hybrid Approach for Semantic Structure Annotating of Text

Facing the challenges of annotating naturally occurring text into semantic structured form for automatically information extracting, current Semantic Role Labeling (SRL) systems have been focusing on semantic predicateargument structure. Based on the Concept Description Language for Natural Language (CDL.nl) which aims to describe the concept structure of text by a set of pre-defined semantic r...

متن کامل

Heuristics for Recovery from Residual Ambiguity and Incongruity in the Semantic Interpretations of Texts

In this paper we present the heuristic algorithms at the core of a text meaning analyzer based on the ontological-semantic approach (e.g., Nirenburg and Raskin 2004). The full analyzer takes as input natural language texts and through many levels of analysis produces text meaning representations (TMRs) formulated in a specially developed ontology-based metalanguage that covers semantic as well ...

متن کامل

Dependency-Based Semantic Parsing for Concept-Level Text Analysis

Concept-level text analysis is superior to word-level analysis as it preserves the semantics associated with multi-word expressions. It offers a better understanding of text and helps to significantly increase the accuracy of many text mining tasks. Concept extraction from text is a key step in concept-level text analysis. In this paper, we propose a ConceptNet-based semantic parser that decons...

متن کامل

Dense Semantic Graph and its Application in Single Document Summarisation

Semantic graph representation of text is an important part of natural language processing applications such as text summarisation. We have studied two ways of constructing the semantic graph of a document from dependency parsing of its sentences. The first graph is derived from the subject-object-verb representation of sentence, and the second graph is derived from considering more dependency r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008